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Abstract. We improve the mixed-integer programming formulation of the multicommod-
ity capacitated fixed-charge network design problem by incorporating valid inequalities
into a cutting-plane algorithm. We use five classes of known valid inequalities: the strong,
cover, minimum cardinality, flow cover, and flow pack inequalities. The first class is par-
ticularly useful when a disaggregated representation of the commodities is chosen, and
the last four are expressed in terms of network cut sets. We develop efficient separation
and lifting procedures for these classes of inequalities. We present computational results
on a large set of instances of various characteristics, allowing us to measure the impact of
the different classes of valid inequalities on the quality of the lower bounds, in particular
with respect to the representation of the commodities.
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1. Introduction

Network design models are used in many applica-
tion areas, most notably in transportation and logis-
tics (Crainic 2000; Magnanti and Wong 1984; Minoux
1989). These models span the entire spectrum of plan-
ning levels. At the strategic level, typical decisions
involve the construction of infrastructures, the loca-
tion of facilities, and the acquisition of assets, taking
into account long-term demands for product move-
ments and vehicle flows (Cordeau, Pasin, and Solomon
2006; Vidal and Goetschalckx 2001). At the tactical
level, decisions are often related to the selection of
service routes by carriers, and the frequencies and
schedules of these routes; such service network design
problems arise in, e.g., maritime (Christiansen et al.
2007), rail (Cordeau, Toth, and Vigo 1998; Zhu, Crainic,
and Gendreau 2014), and intermodal (Crainic and Kim
2007) transportation. At the operational level, service
routes must be established on a short-term horizon,
typically one day; examples include express shipment
services (Armacost, Barnhart, and Ware 2002), adaptive
distribution systems, where facilities (such as parking
spaces) are used or not according to demand fluctua-
tions (Gendron and Semet 2009), and applications in
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city logistics, which involve network design and vehicle
routing decisions (Crainic, Ricciardi, and Storchi 2009).

In this paper, we study the multicommodity capac-
itated fixed-charge network design problem (MCND),
a generic problem that captures many salient features
of network design applications encountered in trans-
portation and logistics. Given a directed graph G =
(N,A), where N is the set of nodes and A is the set of
arcs, and a set of commodities K to be routed accord-
ing to a known demand d* > 0 flowing from an origin
O(k) to a destination D(k) for each commodity k, the
problem is to satisfy the demand at minimum cost. The
objective function consists of the sum of transportation
costs and fixed design costs, the latter being charged
whenever an arc is used. The transportation cost on
arc (i, ) is denoted c;; > 0, and the fixed design cost
for arc (i, ) is denoted f;; > 0. In addition, there is a
capacity u;; > 0 on the flow of all commodities on arc
(i,7); we assume u;; < X, d* for each arc (i, ). The
MCND is NP-hard since it contains as a special case the
multicommodity uncapacitated fixed-charge network
design problem (obtained by imposing u;; = ek d*
for all (i,j) € A), which is NP-hard (Magnanti and
Wong 1984).
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The MCND can be modeled as a mixed-integer pro-
gram (MIP) by using continuous flow variables x%,
which reflect the amount of flow on each arc (i, j) for
each commodity k, and 0-1 design variables y;;, which

indicate if arc (i, j) is used or not

minl 3 33 e+ 33 fiv) ®

keK (i, fleA i, fleA
d, ifi=0(k),
Dixi— D xi=1-d*, ifi=D(k),

jEN; feN; 0, otherwise,
ieN,keK, (2)

Zx!{:‘ < UiYii (i’j)EA’ ®)

keK o

xf.‘j >0, (i,j)eA keKk, (4)

0<y;<1, (i,j)eA, (5)

y;; integer (i,j) €A, (6)

where N ={j e N|[(i,j) € A}, N, = {j e N|(j,i) € A}.
Constraints (2) correspond to flow conservation equa-
tions for each node and commodity. Relations (3) rep-
resent capacity constraints for each arc. They also link
together flow and design variables by forbidding flow
to use an arc that is not chosen as part of the design.
Branch-and-bound (Bé&B) algorithms based on linear
programming (LP) relaxations are the most common
methods to solve such models. Here, however, the
LP relaxation generally provides weak lower bounds
(Gendron, Crainic, and Frangioni 1999). Alternative
relaxation approaches have been devised, in particu-
lar Benders decomposition (Costa, Cordeau, and Gen-
dron 2009) and Lagrangian-based procedures (Crainic,
Frangioni, and Gendron 2001; Gendron and Crainic
1994; Gendron, Crainic, and Frangioni 1999; Holm-
berg and Yuan 2000; Kliewer and Timajev 2005;
Sellmann, Kliewer, and Koberstein 2002). Heuris-
tic methods have also been proposed for comput-
ing feasible solutions (Crainic, Gendreau, and Far-
volden 2000; Crainic and Gendreau 2002; Crainic,
Gendron, and Hernu 2004; Ghamlouche, Crainic,
and Gendreau 2003; Ghamlouche, Crainic, and Gen-
dreau 2004; Hewitt, Nemhauser, and Savelsbergh 2010;
Katayama, Chen, and Kubo 2009; Rodriguez-Martin
and Salazar-Gonzalez 2010). In this paper, we present
a cutting-plane method for improving the LP relax-
ation lower bounds. Although this methodology has
been applied successfully to other, closely related, net-
work design problems (Aardal 1998; Aardal, Pochet,
and Wolsey 1995; Atamtiirk 2002; Atamtiirk and Rajan
2002; Barahona 1996; Bienstock et al. 1998; Bienstock
and Giinliik 1996; Gabrel, Knippel, and Minoux 1999;
Giinlitk 1999; Leung and Magnanti 1989; Magnanti,
Mirchandani, and Vachani 1993, 1995; Ortega and
Wolsey 2003; Raack et al. 2011), it has not been used to
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address the MCND. Our objective is to identify inequal-
ities that can be useful within a cutting-plane frame-
work by exploiting simple structures derived from
relaxations of the MCND. We aim to perform an exten-
sive computational study of the impact of these inequal-
ities on improving the lower bounds for a large set of
instances used in prior works on the MCND.

The cutting-plane method we propose is based on
five classes of known valid inequalities (VI): the strong,
cover, minimum cardinality, flow cover, and flow pack
inequalities. The last four classes of inequalities are
expressed in terms of cut sets, where the set of nodes
is partitioned into two subsets. The five classes of
inequalities are derived from three relaxations of the
MCND: the single-arc design relaxation (for strong
inequalities), the single-cut-set relaxation (for cover
and minimum cardinality inequalities), and the single-
cut-set flow relaxation (for flow cover and flow pack
inequalities). These relaxations display problem struc-
tures for which the VI we use are facet defining under
mild conditions. We recall these known results in
Section 2.

Other classes of VI can be derived. For instance,
instead of using single cut-set structures, one might use
collections of cut sets in a single inequality (Marchand
et al. 2002; Rardin and Wolsey 1993). Another idea is
to partition the set of nodes into k subsets with k > 2
(Agarwal 2006; Bienstock and Giinliik 1996; Gunliik
1999; Magnanti, Mirchandani, and Vachani 1993, 1995).
Such inequalities can also be combined together to
derive other VI by applying mixed-integer rounding
(Atamtiirk and Giinliik 2007; Bienstock and Giinliik
1996; Giinliik 1999; Marchand and Wolsey 2001; Raack
et al. 2011). Although these ideas for generating other
VI have proven effective for some related problems,
especially those involving general integer variables,
our choice of inequalities is based on the abundant
literature that demonstrates the strength of cover and
flow cover inequalities for mixed 01 programs and the
impact of VI based on cut sets for strengthening net-
work design MIP models.

A key to the success of these inequalities is the repre-
sentation of the commodities: it is well known in mul-
ticommodity network flow problems that commodities
sharing the same origin or the same destination can
be aggregated into a single commodity. This transfor-
mation provides the same sets of feasible and optimal
solutions as the original, or disaggregated, commod-
ity representation, whenever there are no commodity-
dependent costs or capacities, which is the case for
the MCND. In this paper, we explore the results
obtained with an alternative commodity representa-
tion that aggregates all commodities with the same
origin, called aggregated commodity representation.

Cutting-plane approaches for related multicom-
modity network design problems, which have all used
cut sets to derive classes of VI, have chosen either
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the aggregated (Bienstock et al. 1998; Bienstock and
Giinliik 1996; Giinliik 1999; Raack et al. 2011) or the
disaggregated commodity representation (Barahona
1996; Gabrel, Knippel, and Minoux 1999; Magnanti,
Mirchandani, and Vachani 1995). To our knowledge,
there was no attempt to look at the effect of com-
modity representation on the strength of the LP relax-
ations obtained by adding cut-set-based inequalities.
We attempt to fill this gap. The advantage of the
disaggregated commodity representation is that some
VI can be stronger in that case (for example, the
strong inequalities), and the advantage of the aggre-
gated commodity representation is the reduction in
the size of the model (the number of flow variables
being reduced by a factor of [V|). Although the com-
bination of disaggregated commodity representation
and strong inequalities provides strong lower bounds
(Gendron, Crainic, and Frangioni 1999), it might be
preferable to use the weaker, but more compact, aggre-
gated commodity representation in the hope that sig-
nificant lower bound improvements are obtained by
adding cut-set-based inequalities.

To our knowledge, the only known theoretical re-
sult on the relationships between commodity repre-
sentation and cut-set-based inequalities is for the case
of single-commodity uncapacitated fixed-charge net-
work design with one origin and multiple destina-
tions (Rardin and Wolsey 1993). In that special case
of the MCND, one can derive an equivalent multi-
commodity formulation by associating a commodity
to each destination. Rardin and Wolsey (1993) show
that the multicommodity LP relaxation enriched with
strong inequalities is equivalent to a single-commodity
LP relaxation strengthened with so-called dicut collec-
tion inequalities, a class of VI derived from cut sets.
As pointed out by these authors, no equivalent result
is known for capacitated problems, even in the single-
commodity case.

Our contribution is threefold. First, we develop a
cutting-plane algorithm that includes separation and
lifting procedures adapted to the MCND. In particular,
we present a new separation procedure for flow cover
and flow pack inequalities. We develop procedures
for generating cut sets, including a method inspired
by metaheuristics approaches, which can be adapted
to other network design problems. Second, we per-
form computational experiments that show the effi-
ciency of our separation, lifting and cut-set generation
methods. We show that our cutting-plane algorithm is
competitive with that of the state-of-the-art MIP solver
CPLEX 12 on a large set of instances. When embed-
ded in the B&B algorithm of CPLEX, we show that our
cutting-plane procedure allows us to prove optimal-
ity for a majority of the instances, and the unsolved
instances show an average optimality gap within 2%
when stopped after a reasonable CPU time limit. Third,
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we compare, with our cutting-plane algorithm, the
relative strength of the different classes of inequal-
ities when using the aggregated and disaggregated
commodity representations. We show that large-scale
instances with many commodities (more than 100)
perform best with the disaggregated commodity rep-
resentation, whereas small-scale instances with few
commodities (around 10) benefit from the aggregated
commodity representation.

The paper is organized as follows. In Section 2,
we describe the five classes of VI and the relaxations
from which they are derived. The separation and lift-
ing procedures for these inequalities are presented in
Section 3. The cutting-plane algorithm, including the
cut-set generation procedure, is the topic of Section 4.
In Section 5, we report the results of experiments on
a large class of problem instances. We conclude this
paper with a discussion of future research avenues.

2. Relaxations and Valid Inequalities

In this section, we present three relaxations of the
MCND, the single-arc design, single-cut-set, and
single-cut-set flow problems, from which we identify
the five classes of VI that are used in our cutting-
plane algorithm. We use the following notation: for
any model MOD, its set of feasible solutions is denoted
F(MQOD), and the convex hull of F(MOD) is denoted
conv(F(MOD)).

2.1. Single-Arc Design Relaxation and

Strong Inequalities
We relax the flow conservation equations and replace
them by inequalities (7), which are derived from the
observation that any optimal solution is circuit free,
since all costs are nonnegative

xk<d*, V(i,j)eAkek. (7)

1]
The resulting relaxation decomposes by arc; follow-
ing the terminology in Magnanti, Mirchandani, and
Vachani (1993), we call the resulting problem associ-
ated with each arc (i, j) the single-arc design relaxation,
SAD;;. Its feasible set can be written as follows:

P(SADJT) = {(xf':')k&—_}(f ya'_;' Z x:"} < uf}'yz'j;

keK
0<xj<d, keK y;e€ {0,1}}. (8)

This set also arises when relaxing the demand con-
straints in the capacitated facility location problem
(CFLP): an arc in the MCND corresponds to a facility
in the CFLP and a commodity in the MCND corre-
sponds to a customer in the CFLP. The following strong
inequalities (SI) are valid for F(SAD;;):

xk <d'y,, VkeK. )

These inequalities are not only facet defining for
conv(F(SAD;;)), but together with the other inequali-
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ties, they define the convex hull of solutions (a proof
can be found in the study of Lagrangian relaxations for
the CFLP by Cornuejols, Sridharan, and Thizy 1991)

conv(F(SAD,))
(xf;)kekf }ff; an = J'jyr'_;'!

kekK

0<xk<d‘y,, keK, y, €0, 1]}. (10)

Adding the SI for all arcs to the MCND LP relaxa-
tion significantly improves the quality of the lower
bound (Gendron and Crainic 1994; Gendron, Crainic,
and Frangioni 1999). Although there is a polynomial
number of SI (|A||K]|), adding all of them to the LP
relaxation yields large models that frequently exhibit
degeneracy. Only a small number of SI are added with
our cutting-plane algorithm.

2.2. Single-Cut-Set Relaxation and
Knapsack Inequalities

If we let S € N be any nonempty subset of N and S =
N\S its complement, we denote the corresponding cut
setsby (5,5)={(i,j)eAli€S,jeS}and (5, 5)={(i,j) €
A|i€S,jeS}, and their associated commodity subsets
K(S,5)={keK|O(k) €S, D(k) €S} and K(S,S) = {k €
K|O(k)eS, D(k) € S}. For any L c K, wealso introduce
the following notation: x5 = 3, x¥ ; for any arc (7, f),
d{Ls 3 = 2kek(s, $)nL d* and d ©.5) = 2kek(, s 4. By sum-
ming the flow conservatlon Equations (2) for all i € S
and k € L, we obtain

2. xp; = 2. x = {ss dLLss} (1)

(i,7)€(8,5) (f,1)e(8,8)

Replacing L by K(S,S) in Equation (11) and using
the inequalities xk(b S < u;yy for (i,j) € (S, S) and
X% > 0 for (j, 1) e (S,5), we obtain the single-cut-set
refaxatzon, SC., whose feasible set is defined as follows,
whered 5=d X(5,9) (note that d K 5 5} =0 by definition):

(.5)
F(8Cs) = [(Fff){f,f}e{s,éJ D UyYy2dss,
(i.))E,3)

y; €{0,1}, (i,j)E(Srg)]- (12)

The single-cut-set inequality defining F(SC;s) states
that there should be enough capacity on the arcs of the
cut set (S, S) to satisfy the total demand that must flow
from Sto S.

By complementing the y variables (replacing y;; by
1-y;) in F(CSs), the single-cut-set relaxation reduces
to a 0-1 knapsack structure. The well-known cover
inequalities for that structure (Balas 1975; Hammer,
Johnson, and Peled 1975; Wolsey 1975) are based on the
following definitions (for the sake of clarity, we adapt
to F(SC;) the terminology related to the 0-1 knapsack
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structure): C C (S, S) is a cover if the total capacity of
the arcs in (S,5)\C does not cover the demand, i.e.,
2, (s, s)c Hij < ds,5); moreover, a cover C C (S, S) is
minimal if it is sufficient to open any arc in C to cover the
demand, i.e., X (s, 3\ %ij + Upg = dis,5, V(p.q) €C.
For every cover C C (S, S), the cover inequality (CI)

D yi=1 (13)
(i, jleC
is valid for F(SC;). This inequality states that at least
one arc from the cover C must be opened to meet the
demand. If C is a minimal cover, we can apply a lifting
procedure to derive a facet of conv(F(CS;)) (Balas 1975;
Wolsey 1975).

In addition to the cover inequalities, we use the so-
called minimum cardinality inequalities. Let the capac-
ities of the arcs in (S,S) be sorted in nonincreasing
order: ua{,} > Ua41)s where a(t] € (S S), t= LS, §)|

ds E,)} + 1 the least number of arcs in (S, S) that must
be used in every solution of F(SCs). We then derive the
minimum cardinality inequality (MCI)

2. Yi2lss: (14)
(i, j)e(s,5)
This inequality has been used to strengthen relaxation
bounds for the 0-1 knapsack problem (Martello and
Toth 1997).

As discussed in Section 3.1, we use the two families
of knapsack inequalities, CI and MCI, in the following
context: initially, some y variables are fixed to either 0
or 1 (using the LP relaxation solution), then, a violated
inequality is generated for the resulting restriction of
F(SC;), and finally, a lifting procedure is applied to
obtain a VI for F(SCs). Different variable fixing strate-
gies are used for the two types of inequalities, which
yields different restrictions of F(SC;). In this context, it
is possible to obtain an MCI stronger than a CI, even
though the MCI is in general weaker than the facet-
defining minimal CL

2.3. Single-Cut-Set Flow Relaxation and Flow
Cover Inequalities

To derive the single-cut-set flow relaxation, we use
the same notation as in the previous section. In addi-
tion, for any arc (7,j) and any L C K, we define bL
min{u;;, 3., d*}, which is an upper bound on the ﬂow
of all commodities in L that can use arc (i, j). Using
this bound and relaxing Equahon (11), we obtain the

single-cut-set flow relaxation, SCF5, whose feasible set is
defined as

F(SCFL)
—{(x”,y”)u JIe(8,5)u(S,8) Z x - Z x”_ {55\» (15)

(i,/)€(5,5) ! (j,)e(5,5)

i ="ij

0<x < bL yf}'r yf}E{0:1}:(1:})5(5:5)U(5:5)} (16)
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This relaxation reduces to the single-node fixed-charge
flow problem, introduced in Padberg, Van Roy, and
Wolsey (1985), and studied by many authors, since it
arises as a natural relaxation for general MIP mod-
els. In particular, two classes of inequalities have been
derived for the single-node fixed-charge flow problem,
the flow cover and flow pack inequalities, which we
now describe for F(SCFE).

A flow cover (C,,C,) is defined by two sets C; C
(8,5) and C, < (5,S) such that p = X j.c, !LT -
2 ijec, b —d~ . > 0. The flow cover inequality (FCI) is

(5.5
then def‘ined as
ST+ (L - (1-y,)
(i, fleCy
< > min{b}, uly;
(f.i)eDy
£ bhedi S &k, (17)
(j.i)eCy (7, 1)e(5,5)\C2UD;

where a* = max{0,4} and D, c (5,5)\C,. This in-
equality has been studied by several authors (Gu,
Nembhauser, and Savelsbergh 1999b; Louveaux and
Wolsey 2007; Padberg, Van Roy, and Wolsey 1985;
Van Roy and Wolsey 1987) and is implemented in state-
of-the-art MIP software tools.

Using the same notation as above, a flow pack
(Cy,C,) is defined by two sets C; £(S,S) and C, (S, S)
such that p=3; jcc, bi; = X nec, b — dL 5 <0 The flow
pack inequality (FPI) is then defined (Atamturk 2001;
Stallaert 1997) as

> x”+ Z (x5, —min{b%, —u}y;)

(i, /)eC; jleD

S Gy Y x
(j.1)eCs (7.i)e(8,SNCa
L3, (18

(i, f1eCy

where D, c (S,5)\C;. The FPI can be viewed
as a flow cover inequality for the relaxation of
F(SCF;) defined by the inequality X ;e s X
T, jecs, 9 %5~ by 5 < —d; 5 where £ ¢ is a slack vari-
able. Under mild conditions, both the FCI and FPI
can be lifted to obtain facet-defining inequalities for
conv(F(SCF%)) (Atamtiirk 2001; Gu, Nemhauser, and
Savelsbergh 1999b).

3. Separation and Lifting Methods

In this section, we present separation and lifting pro-
cedures for each class of VI presented above. We first
note that the separation of strong inequalities is trivial,
as it suffices to scan each arc and each commodity to
identify all violated inequalities. For all cut-set-based
inequalities, we assume a cut set (S, S) is given (see
Section 4 for a description of cut-set generation pro-
cedures). We first present separation and lifting for
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CI and MCI, and then we explain how we generate
FCI and FPI using a new separation routine for these
classes of inequalities. In this section and in the remain-
der of the paper, we use (%, #), with the appropriate
indices, to denote the current fractional LP solution.

3.1. Cover and Minimum Cardinality Inequalities
To generate cover and minimum cardinality inequali-
ties, we first determine, a priori, two subsets C, (the
open arcs) and C, (the closed arcs) in (S, S) that satisfy
the condition

Z u;}- = d(S,g) - Z ”:‘j > 0.

(i, 1)€(8, SN, UCy) (i, )ECy

To find C,; and C;, we perform procedure OpenClose-
Arcs (summarized in Algorithm 1), which uses the
variables U and D to represent, respectively, the resid-
ual capacity (i.e., X jies,8)\(c,uc,) %ij), and the residual
demand (i.e., d(s 5)— X, jjec, #i;)- The procedure makes
use of the current LP solution i, attempting to close
an arc (i, j) with a small value ¥;; (as measured by a
threshold €) such that the residual capacity after clos-
ing arc (i, ) still covers the residual demand D (ie.,
U —u;; 2 D). Similarly, the procedure attempts to open
an arc (i, ) with a large value 7, (as measured by
a threshold 1 — €) such that there is still some resid-
ual demand to cover after opening arc (i,j) (i.e., D —
u;; > 0). As in Gu, Nemhauser, and Savelsbergh (1998),
the sets C; and C, can be derived from the variables
having integer values at the current LP solution, by
using € arbitrarily close to 0.

Algorithm 1 (OpenCloseArcs)
1: U« E[f’,j)&ii §) Uijs D« d[s,ﬁ)
2: forarc (i, j) € (S,5) (in arbitrary order) do
if (7,; <€) and (U - u;; > D) then
Add (i, j) to C,
Close (i, j) by setting U « U —u;
end if
if (7;; 21-¢€) and (D —u;; > 0) then
Add (i, j) to C,
Open (i, j) by set'ting DeD-uy
and U « U —u
10:  end if '
11: end for.

!T—

We define the restricted single-cut-set inequality
induced by C, and C; as

Z Uiy = dis 5 — Z uj;.

(i, j)e(S, SICUCy) (i, j)eCq

To define a cover C for this restricted cut-set inequality,
we have implemented the heuristic approach proposed
by Gu, Nemhauser, and Savelsbergh (1998, 1999a) in
their extensive study of cover inequalities. The basic
idea of this heuristic is to try to exclude as much
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as possible from the set C the arcs with large ¥;;, to
increase the chance of finding a violated inequality
(e, Z¢ jec i < 1). Therefore, the heuristic consid-
ers the arcs in nondecreasing order of j;;, instead of
¥;;/u;;, as would be performed by the classical greedy
heuristic for the 0-1 knapsack problem. Ties are bro-
ken by considering the arcs in nonincreasing order of
their capacity. Once a cover is obtained, it is easy to
extract a minimal cover from it, by removing some of
the arcs until the cover becomes minimal. Once the
cover C is constructed, the induced inequality might be
strengthened by the lifting procedure presented next.
Note that, even if the identified cover inequality is not
violated, we might find a violated one through the lift-
ing procedure.

To generate an MCI, it suffices to use a sorting algo-
rithm to compute the least number of arcs that must be
opened in the set (S, S)\(C; U C,). Although the MCI
is weak in general, by deriving it over a restriction of
(S,S), followed by the application of a lifting proce-
dure, one can obtain a strengthened VI

CI and MCI derived from the restricted cut-set
inequality have the following general form:

Z yn 2 Lf

(i, f)eB

with L =1 and B corresponding to a cover, in the case of
a cover inequality, whereas for a minimum cardinality
inequality, B = (5,5)\(C, U C) and L is equal to the
least number of arcs that must be used in B. Since this
inequality is restricted to open arcs in C,; and closed
arcs in C,, lifting (down for the variables in C, and
up for the variables in C,) is necessary to ensure its
validity for F(SCy).

Lifting amounts to determining coefficients y;; for all
(i,7) € (S, S)\B such that

Z YViiYi + Z y; 2L+ Z Vij

(i, j)e(s,SN\B (. j)eB (i, f)e(8, 5\ (BUCy)

is valid for F(SC;). The lifting procedure is applied
sequentially, meaning that the variables are lifted one
after another in some predetermined order. For each
(1, ), it is well known that the corresponding lifting
coefficient y;; can be determined by solving a 0-1
knapsack problem. The quality of the resulting lifted
inequality depends on the order in which the vari-
ables are lifted. Note that, lifting down the variables
in (S,S)\(B U C,) contributes to the violation of the
inequality since y;y;; < y;;. However, lifting up the
variables in Cj has a negative impact on the violation in
the sense that an inequality violated prior to this lifting
step might become satisfied after. This might happen
if some variables in C;; have positive values (y;; > 0) at
the current LP solution. We conclude that lifting down
the variables in (S, S)\(B U C,) must be accomplished
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before lifting up the variables in C,. Moreover, when
lifting down the variables in (5, S)\(B U C,), those with
fractional values are lifted first, in nondecreasing order
of their current values. Ties are broken by considering
first the arcs in nonincreasing order of their capacity.
When lifting up the variables in C;, we do the exact
opposite.

The cover and minimum cardinality inequalities dis-
play similar structures and, thus, the same lifting strat-
egy is used for both. Different values of the parame-
ter € in procedure OpenCloseArcs are used to define the
restricted sets C, and C,. For the CI, we set € =0, i.e., all
variables with an integer value are fixed to that value,
as in Gu, Nemhauser, and Savelsbergh (1998). For
the MCI, following preliminary computational exper-
iments, we set € = 0.5, which is somewhat intuitive.
Indeed, unlike the CI, which is based on a minimal
cover, the MCI by itself is not strong. Therefore, clos-
ing and opening as many arcs as possible, as reflected
by the value € = 0.5, and then lifting the variables that
have been fixed, will lead to a stronger inequality.

3.2. Flow Cover and Flow Pack Inequalities
To generate flow cover and flow pack inequalities, we
use two simpler VI for F(SCF:). The first one is the
single-arc flow pack inequality (SFPI), defined as

L L L L
3 et < 3 vhed g

(i, j)eC; (j.1)eCy
+ >, xh+(-y) D) b, (19)
(7. (5, 51T, (i, j)eC]

where (r,t) € (S,S), C. € (S,5\{(r,t)},and C, C (S, S).
The second Vlis called the single-arc flow cover inequality
(SECI)

> sheats( 3 vhedsgJa-u
(i, )eC; (j, 1)eC
xi+y, >, b, (20)

2

(. )e(5, NG, (i ec;

where (r,t)€(S,8), C; €(S,S), and C, C(S,5)\{(r,1)}.
The online appendix shows the validity of these
inequalities and specifies conditions under which they
can be used to derive violated FCI and FPL

The interest of these single-arc inequalities is that
their separation problems are simple, in contrast with
the FCI and the FPI, which are hard to separate. Indeed,
given (¥, i) the current LP solution and an arc (r,t) €
(S,S), separating the SFPI consists in setting

C; = {Gi, ) € S, O\, D} £ > (1 - 7,084},
C = {(j,1) € (5,9) | b5, < %1},

ji

For each subset S generated by the cutting-plane algo-
rithm, the separation procedure thus scans each arc in
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(S,8), trying to find a violated SFPI associated with
this arc. If S consists of a singleton containing the ori-
gin of commodity k, we set L = {k} and C} = @, since
in this case there is no flow of commodity k coming
into r. Otherwise, we set L = {k € K| %, > 0}, to maxi-
mize the left-hand side of (19) and increase the chance
of a violation. The separation procedure for the SFCI is
derived in a similar way.

Once a violated SFPI is obtained, we lift the inequal-
ity to obtain an FPL First, we set C, = C}, C,=C,,
and p = y'. Then, we initialize D; = {(r,t)} and
add to D, each arc (i,) € (S,5)\C; such that %}, —
min{b;;, —u}¥;; > 0. Finally, we lift the resulting FPI by
applying the function proposed by Atamtiirk (2001):
we lift all variables in C, and the variables in (S, S)\C,
such that 7;; = 0. In addition, if u’ + b%, > 0, we lift the
violated SFPI to generate a violated FCL. We first add
(r,t) to C] to obtain C,, set C, = C;, and compute u =
u’ +by,. Then, for each arc (i, j) € C; such that b" > y,
we add to the left-hand side of the inequality the term
(bf;— 1)1 -y;))- We then set D, = {(j, i) € (S, S)\C, | &}, >
min{b%, u}7;}. Finally, we lift the resulting FCI by
applying the function proposed by Atamtiirk (2001):
we lift all variables in C, and the variables in (S, $)\C;
such that 3;; =0.

We proceed similarly when a violated SFCI is gen-
erated. First, we lift the inequality to derive a violated
FCI. To this end, we set C; =C}, C, =C}, and u = 1,
and then proceed as above to obtain a lifted FCI. If
i’ — bk, <0, we also lift the violated SFCI to generate a
violated FPI, by setting C; = C/, adding (r,t) to C} to
obtain C, and computing u = i’ — b%,; then, we proceed
as above to generate a lifted FPI.

To summarize, for each cut set identified by the
cutting-plane algorithm, the separation procedure first
identifies violated SFPI and SFCI. For each of these
violated inequalities, lifting is applied to generate a
FCI, a FPI, or both. Our approach to generate FCI and
FPI contrasts significantly with the standard separation
procedure, which uses a relaxation involving only the
0-1 variables, thus allowing to derive FCI and FPI from
simple covers (Nemhauser and Wolsey 1998). Here, we
use a relaxation that involves both the 0-1 and the con-
tinuous variables, allowing us to derive FCI and FPI
from single-arc structures.

4. Cutting-Plane Algorithm

The cutting-plane algorithm (Algorithm 2) starts by
solving the LP relaxation of formulation (1)—(7), the
so-called weak relaxation of the problem. Subsequently,
it alternates between the generation of cuts and the
solution of the current LP relaxation (with the addi-
tion of all cuts generated so far). The generation of cuts
is controlled by parameters that determine whether or
not the separation and lifting procedures for each class
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of VI should be activated. If the generation of any one
of the cut-set-based inequalities (i.e., LCI, LMCI, FCI,
FPI) is activated, the generation of cuts starts by identi-
fying a family of cut sets. For each cut set in this family,
the corresponding violated cut-set-based inequalities
are generated.

The cutting-plane algorithm follows two phases. In
phase I, the family of cut sets is based on singletons, i.e.,
for each cut set (S, 5), S is an origin or S is a destination
for at least one commodity. Phase I iterates over this
family of cut sets until no further significant improve-
ment in the lower bound, z, is observed. In phase II,
more complex families of cut sets are generated, using
one of the three approaches described in the remainder
of this section. At the end of phase II, if the bound has
improved from the first to the second phase, phase I
is launched all over again. To limit the total computa-
tional effort, we use three parameters (their setting is
discussed in Section 5.4):

¢ §, the minimum bound improvement required to
continue the procedure (in phase I, we compute the
improvement between two consecutive LPs; in phaseIl,
we compare the lower bounds at the beginning and at
the end of the phase);
¢ T, .. which limits T, the number of calls to
phase II;

* M, .., which is an upper bound on the cardinality
of the subsets S generated in phase II.

Algorithm 2 (CuttingPlane)
1: Solve the weak relaxation, yielding z
(the optimal value) and ¥ (the design solution)
if y is integral then
stop
end if
Zpe —zand T «0
Phase I:Generate cuts, using the family of
cut sets based on all singletons
7: if some cuts were found then
8:  Solve the LP relaxation, yielding z and y
9: if j isintegral or z — z),,, < 6 then
10: stop
11: endif
122 z,,<zandgoto6
13: end if
14: Phase II:
15: if T < T,,, then
16: zg¢—zandT«T+1

17 forM=2toM,_,, do

18: Generate a family of cut sets based on
subsets of N of cardinality M

19: Generate cuts, using the current
family of cut sets

20: if some cuts were found then

21 Solve the LP relaxation, yielding z and ¥

22: if 7 is integral then
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23: stop

24: end if

25: end if

26: end for

27:  if z—2z,, > 6 then
28: gotob

29: endif

30: end if.

Three approaches are used to generate families of
cut sets in phase II (step 18 of the procedure). The
first approach, called Enumeration, consists of gen-
erating all possible subsets of N of cardinality M.
Clearly, M,,.., should then be kept at a relatively small
value, otherwise the number of cut sets is prohibitively
large. In Section 5.4, the Enumeration approach is com-
pared with the two other approaches, described in
Sections 4.1 and 4.2, which generate only some of the
subsets of N of cardinality M.

4.1. Articulation Sets and Metric Inequalities

The second approach uses the notion of articulation set,
which is a set S € N such that the removal of S dis-
connects, for at least one commodity k, its origin O(k)
from its destination D(k). Note that if k € K(S, S), i.e.,
O(k)e S and D(k) €S, S is by definition an articulation
set for k, but there might be other articulation sets such
that O(k) € S. To identify all articulation sets of cardi-
nality M, we consider every subset S of cardinality M
and solve the shortest path problems for every com-
modity k with all arc lengths equal to 0, except those of
the arcs in (S, S), which are set to 1. If the shortest path
length for commodity k is greater than 0, S is identi-
fied as an articulation set. In addition, if the shortest
path length for commodity k is greater than 1, this
means that every path between O(k) and D(k) must
cross (S,S) more than once. Under this condition, the
single-cut-set inequality

D Uiy > > d (21)

(i,f)€(8,8) keK(S,$)

is dominated by a metric inequality (Onaga and
Kakusho 1971), whose general form is

Z Uijlij 2 Z ﬂ?s,ﬁ)dk’ (22)
(i, j)€(,8) keK
where R?S,S?) is the length of the shortest path between
O(k) and D(k) with arc lengths equal to 1 in (S,S)
and 0 everywhere else. Indeed, when S is an articula-
tion set only for the commodities in K(S, S) and every
path between O(k) and D(k) crosses (S, S) only once,
for each commodity k € K(S, S), then the single-cut-set
inequality (21) reduces to (22); otherwise, (21) is dom-
inated by (22). The validity of (22) is easy to prove by
using LP duality (see Costa, Cordeau, and Gendron
2009 for a complete discussion).
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In the so-called Articulation approach, we thus gen-
erate all cut sets (S, S), where S is an articulation set of
cardinality M. The articulation sets for cardinality M
are generated only once, before the first execution of
the for loop at step 17, and the corresponding cut sets
are stored in memory for subsequent calls to phase II
(this is also how the Enumeration approach is imple-
mented). When violations of the cut-set-based inequal-
ities are examined, the constant term d(Ls, 5 is replaced

by 2 ﬂz‘s 54", since the shortest path lengths have
already been computed.

4.2. Metaheuristics-Based Cut-Set Generation

In this third approach, the generation of the corre-
sponding families of cut sets is dynamic, because it
depends on the current solution to the LP relaxation.
In this Heuristic approach, new families of cut sets are
obtained by partitioning the set of nodes N into L sub-
sets §;,1=1,...,L,such that §,N S, =@, for all | #k,

......

sponding partition of N determines a family of cut sets
available for the generation of violated VI.

This approach is inspired by principles derived from
metaheuristics. First, it calls on a construction proce-
dure to provide an initial partition of N into subsets of
cardinality M. Cuts are generated on this initial fam-
ily of cut sets. Then, a fixed number, I, of iterations
of a local search procedure is performed to derive new
partitions of N into subsets of cardinality M. Each new
partition is obtained by simply moving nodes among
subsets around a cycle, thus preserving the subset car-
dinality from the initial partition to the new one. For
each partition thus obtained, cuts are generated for the
corresponding family of cut sets. To summarize, in the
Heuristic approach, the family of cut sets generated at
step 18 is the union of the families of cut sets obtained
by the construction procedure and the I, calls to the
local search procedure.

The initial partition of N into subsets of cardinality M
is obtained by the construction procedure called Gen-
erateMultiSet(M) (Algorithm 3). Since all types of cut-
set-based inequalities have a higher chance of being
violated when the arcs in (S;,S;) display small frac-
tional values y;;, the procedure attempts to construct the
sets S; with the objective of minimizing X, s, 3, ¥ij
and X s, s, ¥;i- At any step of the procedure, let S,
be a subset of N of cardinality smaller than M. Initially,
the family contains one subset, S, having a single ele-
ment (arbitrarily chosen). We denote free node, a node
that is not included in any subset, and N, the set of all
free nodes. Also, for each free node j, let

wy = ma { gy g |
To achieve our objective, we identify the free node n

such that n = argmax;  {w;}. If  exists, then we add
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it to S; and move to the next step: continue with the
construction of S, if |S,| < M or, otherwise, proceed to
the construction of S,,; (by selecting arbitrarily some
free node and then repeating the process). If, however,
no free node is connected by an arc to at least one node
in S;, we choose # arbitrarily among the free nodes. The
procedure stops when there are no more free nodes.

Algorithm 3 (GenerateMultiSet(M))
N«N,l«1
if N = @ then
stop
end if
Select (arbitrarily) a node m € N
Add m to S, and remove it from N
if |S;| > M then
l<—Il+landgoto2
end if
10: n «argmax; g{w;}
11: if n exists then
122 menandgoto?
13: end if
14: Goto 2.

O PN T

Note that the procedure attempts to first include in S,
a free node that is connected by an arc to at least one
node in S, to avoid generating VI that are aggregations
of previously generated VI. Indeed, sets S, must be
connected, otherwise the corresponding cut-set-based
inequalities will be dominated by others. Our construc-
tion procedure is similar to the heuristic methods used
in Bienstock et al. (1998), Giinliik (1999), Ortega and
Wolsey (2003), and Raack et al. (2011), in that these
approaches also build a subset S by starting from a
single node and by gradually enlarging it through the
addition of neighboring nodes that are connected by
an arc to at least one node in S. The difference lies
in the criteria being used to add a neighboring node;
Ortega and Wolsey (2003) use the same criterion as
ours, but also other criteria, and Bienstock et al. (1998),
Giinliik (1999), and Raack et al. (2011) use the sum
of the slack and the value of the dual variable in the
capacity constraint. The local search procedure, that
we now present, has no analog in the literature, to our
knowledge.

The local search procedure identifies new families
of cut sets by performing exchanges of nodes among
subsets of the current family. The basic idea behind
these exchanges is to obtain a new subset S, from
a subset S; by moving a node n from some set S,,
S €S, to S;. These exchanges are performed by the
procedure MultiExchange((S,),-, ., W, Wy), illustrated
in Algorithm 4. The sets W and W), contain, respec-
tively, the indices I of all subsets S; and the nodes
n € N involved in some exchanges at previous calls to
the procedure. These sets are used to ensure that the
exchanges reach different subsets and involve distinct
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nodes, thus creating new cut sets at each iteration. The
procedure considers at each step a set S; and aims to
identify and move to S, the node n such that

n= arg max {w;}.
FEN\WA )N Usgn, 5,5, 5¢)

Note that n € N\W,, is chosen among the set of nodes
connected by an arc to at least one node in §,;. Again,
this strategy attempts to avoid generating VI that are
aggregations of previously generated ones. Once 7 is
identified, we move it from some set S, to S,. Then,
the procedure repeats the process by considering sub-
set 5, at the next iteration. The procedure starts with a
set 5; not involved in previous exchanges (i.e., [ ¢ W).
The procedure also stores in set V' the indices of the
subsets S; considered at each iteration and stops when-
ever it finds a couple of subsets (5;,S,) involved in
an exchange such that k € V. This strategy identifies a
cycle on which the nodes are moved around. By doing
so, all subsets have the same cardinality as before the
exchanges.

Algorithm 4 (MultiExchange((S,),-, . ., W, Wy))

Veo

if W={1,...,L} then
Wea

end if

Let I ¢ W correspond to some set not involved
in previous exchanges

n < argmax

FEN\WAIN(Uggn, s, <5, S5) {w;}

if (Uigw,s,c5, Se) =@ then
We@andgotob

end if

10: if n does not exist then

11: Wye@andgotob

12: end if

13: Let S, c S, such thatn € S,

14: Move n from S, to S,

15: Wy « W, U {n}

16: W WU ({I}

17: if V = @ then

18 I« 1

19: end if

20: V<V U{l}

21: if ke V then

22:  ifk#1, then

e

23: n < argmax, ¢ (Max;es, ¥;;, MaX;cs, ¥;;)

24: Move n from S :‘.-.] to S; (to complete the cycle)
25: endif '

26:  Stop

27: end if

28: l —kandgotoé.

5. Computational Results
Computational experiments were performed with four
objectives in mind: (1) Verify that our implementation
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of separation and lifting procedures for CI and FCI is
competitive with that of a state-of-the-art MIP solver
(CPLEX 12). (2) Compare the relative performance of
the different classes of VI. (3) Test the performance
of the cut-set generation procedures. (4) Evaluate the
quality of the formulations obtained from different
variants of the cutting-plane algorithm, by perform-
ing the B&B algorithm of CPLEX 12 on each of these
formulations. Following Section 5.1 that describes the
data instances and the performance measures used in
the experiments, we present and analyze the results in
Sections 5.2 to 5.5, each dedicated to one of these objec-
tives. To facilitate reading, we recall the abbreviations
used for each class of inequalities: SI, strong inequal-
ities (9); CI, cover inequalities (13); MCI, minimum
cardinality inequalities (14); FCI, flow cover inequali-
ties (17); FPI, flow pack inequalities (18).

5.1. Data Instances and Performance Measures
Computational experiments were conducted on a
publicly available set of 196 instances (the so-called
“Canad” instances; Frangioni 2012) used in several
papers on the MCND (for instance, Ghamlouche,
Crainic, and Gendreau 2003; Hewitt, Nembhauser,
and Savelsbergh 2010; Kliewer and Timajev 2005)
and described in detail by Crainic, Frangioni, and
Gendron (2001). These problem instances consist of
general transshipment networks with one commod-
ity per origin-destination and no parallel arcs. Asso-
ciated with each arc are three positive quantities: the
capacity, the fixed charge, and the transportation cost.
These instances are characterized by various degrees
of capacity tightness, with regard to the total demand,
and importance of fixed design cost, with respect to the
transportation cost.

The instances are divided into three classes. Class I
(the “C” instances in Frangioni 2012) consists of 31
problem instances with many commodities compared
to the number of nodes, whereas class II (the “C+”
instances in Frangioni 2012) contains 12 problem
instances with few commodities compared to the
number of nodes. Class III (the “R” instances in Fran-
gioni 2012) is divided into two categories, A and B,
each containing nine sets of nine problem instances
each. Each set is characterized by the numbers of
nodes, arcs, and commodities, which are the same
for the nine instances, and by instance-specific lev-
els of fixed cost and capacity tightness. Class III-A
(instances “R01” to “R09”) contains 72 small size prob-
lem instances with 10 nodes (nine infeasible instances
have been discarded), whereas class III-B (instances
“R10” to “R18”) contains 81 medium to large size
instances with 20 nodes.

To evaluate the performance of the different formu-
lations and variants of the cutting-plane algorithm, we
use three measures:
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* The computing time, {, where all experiments are
performed on a network of Dual-Core AMD Opteron
(using a single thread) with 8 GB RAM operating
under SunOS 5.10. The procedures are coded in C++.
To solve the LP relaxations, we use the dual simplex
implementation of CPLEX 12.

¢ The gap between the lower bound and the value of
a reference solution. For the weak relaxation, we use as
the reference solution the best (often optimal) solution
of value z* obtained by using the B&B algorithm of
CPLEX 12 for a limit of 10 hours on several formu-
lations derived from the cutting-plane algorithm (see
Section 5.5 for a description of these formulations). For
the weak relaxation lower bound z", we thus report
the following gap measure:

Az = 100(z" —z“").
—

For any lower bound z computed by the cutting-plane
procedure, the reference is the weak relaxation bound,
and we use the following gap measure:

_100(z - z*)
=

Az"

¢ The number of cuts generated by the cutting-plane
algorithm.

Table 1 gives the classification of the instances.
Columns “Description” and “Nb” show the dimen-
sion of the instances, characterized by the numbers
of nodes, arcs, and commodities, and the number
of instances with these dimensions, respectively. The
average gap between the bounds of the weak relaxation
and the best-known feasible solution is given under
column Az", and the average times required to solve the
weak relaxation for the disaggregated and aggregated
formulations are given in columns ¢(Dis) and t(Agg),
respectively. The “Average” line shows the gap average
over all instances in each class along with the aver-
age times required to compute the bounds. The results
in column Az* confirm the poor quality of the lower
bounds generated by the weak relaxation. Obviously,
the disaggregated and aggregated formulations pro-
vide the same lower bound, and they do so with a
similar (and negligible) computational effort.

5.2. Comparison with CPLEX Cuts

Table 2 displays the per-class average results ob-
tained by the cutting-plane method implemented in
CPLEX 12, with default settings, and those of our
cutting-plane algorithm, using the disaggregated and
aggregated commodity representations. We aim espe-
cially to compare the respective implementations of CI
and FCI. For a fair comparison, single-node cut-set
structures have been added to the formulations given
to CPLEX. These special structures are redundant in
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Table 1. Classes and Problem Dimensions

Weak LP Weak LP
Description Nb Az* (%) t(Dis) tH(Agg) Description Nb Az (%) t(Dis) tHAgg)
Class I Class I

20,230,40 (3) 7.70 0.1 0.1 25,100,10 (3) 29.02 0.0 0.0
20,230,200 (4) 26.50 1.1 0.9 25,100,30 (3) 2444 0.1 0.1
20,300,40 (4) 9.74 0.1 0.1 100,400,10 (3) 37.25 0.6 0.9
20,300,200 (4) 21.01 1.6 1.1 100,400,30 (3) 34.01 1.7 2.6
30,520,100 (4) 19.51 0.8 0.9

30,520,400 (4) 15.32 6.5 7.9

30,700,100 (4) 17.72 0.7 0.9

30,700,400 (4) 17.67 7.8 7.3

Average (31) 17.19 24 25 Average (12) 31.18 0.6 0.9

Class ITI-A Class ITI-B

10,35,10 (6) 12.61 0.0 0.0 20,120,40 9 21.93 0.1 0.1
10,35,25 (6) 17.96 0.0 0.0 20,120,100 9 19.56 0.6 0.5
10,35,50 (6) 1434 0.0 0.0 20,120,200 9 16.68 23 0.8
10,60,10 9) 20.26 0.0 0.0 20,220,40 9 29.91 0.2 0.2
10,60,25 9) 16.06 0.0 0.0 20,220,100 9 26.84 0.6 0.6
10,60,50 9) 18.67 0.0 0.0 20,220,200 9 23.87 44 1.1
10,85,10 9) 17.25 0.0 0.0 20,320,40 9 32.30 0.2 0.2
10,85,25 9) 18.69 0.0 0.0 20,320,100 9 30.27 0.7 0.8
10,85,50 9) 21.54 0.0 0.0 20,320,200 9 27.70 5.1 14
Average (72) 17.80 0.0 0.0 Average (81) 25.45 1.6 0.6

the formulation but allow CPLEX to identify vio-
lated cover inequalities. The columns “CI” and “FCI”
display, respectively, the average results obtained by
using CI alone and FCI alone, and the columns “All”
and “Enuml” show the average results obtained by
using all classes of VI in “CPLEX” and our “Cutting-
Plane” algorithm. Note that “Enum1” denotes the vari-
ant of our cutting-plane algorithm that performs only
phase I, i.e., all classes of VI are used, but only
single-node cut sets are used in the cut-set generation
procedure.

The results indicate that our implementation of
separation and lifting procedures for CI and FCI is
competitive with that of a general-purpose state-of-the-
art MIP solver. Indeed, we observe, when generating
cover inequalities, better gap improvements with our
implementation on the disaggregated models and the
opposite on the aggregated models; in all cases, the
differences both in terms of gap improvement, time,
and number of cuts are relatively minor. When gener-
ating flow cover inequalities, our implementation pro-
vides better gap improvements on average, in much
less time for the disaggregated models (even though
about three times more cuts on average are gener-
ated by our implementation) and in slightly more time
for the aggregated models. This shows that our sep-
aration method for FCI provides effective results for
our MCND instances; it would be interesting to eval-
uate the performance of this separation method on
general MIPs.

We have added the results with all classes of cuts
implemented in CPLEX and in our algorithm to show
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that, even in that case, our results remain competi-
tive. For the disaggregated models, the gap improve-
ments are better on average, but these improvements
are obtained with much less computational effort; for
the aggregated models, the gap improvements are also
better on average, but the computing times are slightly
higher. We note, however, that the number of cuts gen-
erated by our implementation is significantly larger
than the number of cuts generated by CPLEX. This is
certainly a concern when implementing our cutting-
plane method within a B&B framework, but only mod-
erately so, since procedures to remove inactive cuts can
be easily added to ensure the size of the formulations
remains tractable.

These results also suggest the following observations,
which we will confirm with further experiments:

* Based on the gap improvements, we can conclude
that cover inequalities (with Az" always less than 10%
on average) are dominated by flow cover inequalities
(with Az" always larger than 20% on average). This is
true not only for our algorithm but also for CPLEX.
Given the fact that CI is derived from the single-cut-
set relaxation, which is itself a relaxation of the single-
cut-set flow structure, from which we obtain FCI, the
dominance of FCI over CI was expected, but not the
extent by which FCI dominates CI.

* Flow cover inequalities capture most of the lower
bound improvement coming from all types of cuts; this
is true for our cutting-plane algorithm, but also for
CPLEX. These results confirm the literature on fixed-
charge network design that identifies FCI as strong VI
for such problems.
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Table 2. CPLEX Cuts vs. Cutting-Plane Algorithm
CPLEX (Disaggregated)

Classes CI FCI All

Nb Az® (%) t Cuts Az¥ (%) t Cuts Az® (%) t Cuts
Class I (31) 0.48 10.1 7 17.95 1,606.8 662 18.75 993.1 696
Class II (12) 23.26 0.1 18 38.19 0.8 110 47.53 47 151
Class [TI-A (72) 5.39 0.0 5 17.71 0.1 72 21.00 0.1 82
Class I1I-B (81) 4.59 24 13 27.87 101.8 333 31.23 104.1 384
Average (196) 5.37 2.6 9 23.20 296.3 276 26.49 200.4 308

Cutting-Plane (Disaggregated)

Classes CI FCI Enuml

Nb Az® (%) t Cuts Az¥ (%) t Cuts Az® (%) t Cuts
Class I (31) 1.00 2.5 21 17.32 158.2 1,288 19.21 95.5 3,123
Class II (12) 24.38 0.7 28 50.66 10.1 725 52.70 5.3 1,402
Class [TI-A (72) 8.78 0.0 16 20.35 0.1 165 21.25 0.1 363
Class I1I-B (81) 8.86 29 38 31.34 63.4 1,125 33.71 21.5 2,343
Average (196) 8.54 1.6 27 26.27 51.9 774 28.00 24.3 1,682

CPLEX (Aggregated)

Classes CI FCI All

Nb Az™ (%) t Cuts Az¥ (%) t Cuts Az™ (%) t Cuts
Class I (31) 0.12 1.3 7 13.83 26.6 584 16.28 28.8 463
Class II (12) 16.57 0.1 18 38.24 0.6 109 46.12 43 147
Class [TI-A (72) 5.63 0.0 6 16.89 0.0 57 19.93 0.0 68
Class I1I-B (81) 2.68 0.2 14 24.02 2.8 238 25.92 6.4 264
Average (196) 421 0.3 10 20.66 54 218 2343 7.5 216

Cutting-Plane (Aggregated)

Classes CI FCI Enuml

Nb Az® (%) t Cuts Az¥ (%) t Cuts Az® (%) t Cuts
Class I (31) 0.12 2.2 2 13.30 43.0 2,572 14.09 51.9 4,825
Class II (12) 9.80 0.9 7 49.31 11.7 754 51.40 7.6 1,469
Class [TI-A (72) 2.33 0.0 2 18.55 0.1 184 19.36 0.1 363
Class I1I-B (81) 1.85 0.6 4 26.32 11.3 1,240 27.87 19.5 2,486
Average (196) 224 0.7 3 22.81 12.2 1,033 24.01 16.8 2,014

* Thedisaggregated commodity representation pro-
vides better lower bound improvements than the ag-
gregated one, at the expense of higher computing
times; again, this is true for our cutting-plane al-
gorithm and for CPLEX. The two algorithms differ
significantly, however, in their respective computa-
tional effort to handle the disaggregated commodity
representation, our implementation being an order of
magnitude faster on average, in spite of generating a
significantly larger number of cuts.

5.3. Comparison Among Classes of

Valid Inequalities
In this section, we present the results of computational
experiments performed to compare the relative perfor-
mance of the five classes of VI. As in the previous sec-
tion, only phase I of the cutting-plane algorithm was
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Table 3. Comparison of Valid Inequalities for All Instances

Disaggregated Aggregated
None+ All- None+ All-
Az¥ (%) Az (%) t Az¥ (%) t  Az¥ (%) ¢
@ 0 1.1 28.00 243 0 0.7 24.01 16.7
SI 2653 17.8 2712 481 11.73 0.8 2401 215

CI 8.54 1.6 2796 253 2.24 0.7 24.02 158
MCI 8.00 1.5 28.00 244 2.09 0.7 24.03 149
FCI 2627 519 28.01 265 2281 122 2399 113
FPI 26.89 512 2794 21.0 2395 17.6 2287 9.3

performed. We first present average results over all
classes of instances, and then we analyze the results for
the different classes of instances.
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Table 3 shows, for the disaggregated and aggre-
gated commodity representations, the improvement
gap, Az"”, and the computing time, f, averaged over
the 196 instances. In column “None+” we show the
results obtained by using each individual class alone,
and in column “All-" we display the results obtained
by using all classes of VI, except the one identifying the
respective row. These results show the superiority of
the inequalities based on continuous and 0-1 variables,
i.e,, SI, FCI, and FPI, over those based only on 0-1 vari-
ables, i.e., CI and MCL They also show that the disag-
gregated commodity representation provides tighter
formulations than the aggregated commodity repre-
sentation. In particular, by adding only the SI to the
disaggregated model, we obtain better lower bounds
on average than by adding all of the cuts to the aggre-
gated model, in about the same computational effort.
It is interesting to note that, for both commodity rep-
resentations, the FPI is the most effective individual
class of inequalities for improving the bound, but at
the expense of a significant computational effort. In
particular, the SI class is almost as effective as the FPI
class for the disaggregated representation, but adding
SIrequires much less computing time. In fact, the Sl are
essential for obtaining good performance: removing
them leads to a significant increase in computing time.

Table 4 analyzes, for each class of instances, the effect
of activating each individual class of inequalities, for
the disaggregated and aggregated commodity repre-
sentations. Results are reported only for the inequali-
ties that involve continuous and 0-1 variables, i.e., SI,
FPI, and FCI, which have already been shown to be
stronger than the other classes of inequalities.

These results emphasize the differences between the
aggregated and disaggregated commodity representa-
tions. Not only is the SI significantly more effective in
improving the lower bound within the disaggregated
representation, as expected, but also the FCI and FPI
reduce the lower bound gap more significantly within

the disaggregated representation, and by generating
less cuts. We note that the differences between the two
commodity representations are less pronounced for
class II and, to a certain extent, for class III-A. This is
not surprising, as instances in classes II and III-A are
characterized by a small number of commodities, and
disaggregation has less impact on such instances. With
the disaggregated commodity representation, SI shows
the best overall performance regarding the lower bound
improvement and the computational effort needed. For
instances in classes II and III-A, however, FPI obtains
the best average gap improvement, but at the expense
of increasing the computing time. When the number of
commodities is significantly larger than the number of
nodes, as for most instances in classes I and III-B, SI
outperforms FPI and FCI. Not only is the identification
of violated VI easier with SI but also the number of
cuts generated by SI is significantly less than with FCI
and FPL

5.4. Evaluation of Cut-Set Generation Procedures
In this section, we assess the cut-set generation ap-
proaches presented in Section 4. More precisely, the
following variants of the cutting-plane algorithm were
implemented and tested (all classes of VI were used):

* Enuml. This variant consists in performing only
phase I, ie, only single-node cut-set structures are
considered.

¢ Enumyj, j > 2. These variants are obtained by using
the Enumeration approach in phase II, i.e., all subsets of
N of cardinality j are generated. We report the results
for two values of j: 2 and 3. As we will see below, the
bound improvement from Enum?2 to Enum3 is minor, in
spite of a significantly increased computational effort.

* Artic. This is the Articulation approach with
M., =2, ie., we generate all cut-sets (S, S), where S is
an articulation set of cardinality 2.

* Heur. This is the Heuristic approach based on the
construction and local search procedures, GenerateMul-
tiSet and MultiExchange, presented in Section 4.2. The

Table 4. Comparison of Valid Inequalities by Classes of Instances

Classes SI FCI FPI

Nb Az" (%) t Cuts Az (%) t Cuts Az (%) t Cuts

Disaggregated
Class I (31) 19.06 80.1 870 17.32 158.2 1,288 17.89 139.1 1,941
Class I (12) 44,83 2.2 208 50.66 10.1 725 52.15 14.9 852
Class IITI-A (72) 19.52 0.0 76 20.35 0.1 165 20.75 0.1 227
Class III-B (81) 32.92 12.1 685 31.34 63.4 1,125 32.06 68.3 1,692
Average (196) 26.53 17.8 462 26.27 51.9 774 26.89 51.2 1,142
Aggregated

Class I (31) 222 2.3 58 13.30 43.0 2,572 14.05 40.9 2,925
Class I (12) 41.18 2.7 179 49.31 11.7 754 51.08 10.4 857
Class IITI-A (72) 9.04 0.0 24 18.55 0.0 184 19.30 0.1 222
Class III-B (81) 13.39 0.7 119 26.32 11.3 1,240 27.84 25.4 1,706
Average (196) 11.73 0.8 78 22.81 12.2 1,033 23.95 17.6 1,302
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Table 5. Evaluation of Cut-Set Generation Procedures
Disaggregated

Classes Enuml Enum?2 Enum3

Nb Az (%) t Cuts Az¥ (%) t Cuts Az¥ (%) t Cuts
Class I (31) 19.21 95.5 3,123 19.22 94.7 3,137 19.22 130.8 3,152
Class I (12) 52.70 5.3 1,402 54.65 229 1,684 55.41 219.2 2,304
Class IITI-A (72) 21.25 0.1 363 21.53 0.1 389 21.64 0.2 410
Class III-B (81) 33.71 215 2,343 33.78 229 2,375 33.81 25.9 2,407
Average (196) 28.00 24.3 1,682 28.26 25.9 1,723 28.36 449 1,785
Classes Artic Heur ArticHeur

Nb Az (%) t Cuts Az¥ (%) t Cuts Az¥ (%) t Cuts
Class I (31) 19.22 107.8 3,138 19.22 106.5 3,137 19.23 101.5 3,149
Class I (12) 54.36 16.9 1,580 55.15 18.1 1,735 55.36 24.7 1,769
Class IITI-A (72) 21.53 0.1 386 21.52 0.2 382 21.56 0.2 389
Class III-B (81) 33.78 21.0 2,373 33.81 26.6 2,376 33.81 22,6 2,384
Average (196) 28.24 26.8 1,716 28.29 29.0 1,725 28.32 27.0 1,734

Aggregated

Classes Enuml Enum?2 Enum3

Nb Az (%) t Cuts Az¥ (%) t Cuts Az¥ (%) t Cuts
Class I (31) 14.09 51.86 4,825 15.27 156.1 5,514 15.96 555.5 6,418
Class I (12) 51.40 7.63 1,469 53.95 33.9 1,737 55.13 634.4 2,448
Class IITI-A (72) 19.36 0.1 363 20.65 0.2 438 21.08 0.9 511
Class III-B (81) 27.87 19.5 2,486 29.15 45.1 2,857 29.86 125.9 3,291
Average (196) 24.01 16.7 2,014 25.35 45.5 2,320 25.98 179.0 2,713
Classes Artic Heur ArticHeur

Nb Az (%) t Cuts Az¥ (%) t Cuts Az¥ (%) t Cuts
Class I (31) 15.19 149.0 5,462 15.40 165.2 5,423 15.71 208.3 5,672
Class I (12) 53.63 24.3 1,682 54.69 321 1,860 54.72 38.6 1,863
Class IITI-A (72) 20.50 0.2 433 20.87 0.3 430 21.00 0.4 464
Class III-B (81) 29.02 399 2,827 29.48 55.0 2,830 29.70 64.2 2,958
Average (196) 25.21 41.6 2,294 25.63 50.9 2,299 25.82 62.0 2,404

parameters of the procedures were calibrated and the
following values were used: 6 =0.1, T,,, =5, M, =
[N/3],and I, = 20.

e ArticHeur. This variant combines the last two
methods. More specifically, articulation sets of cardi-
nality 2 are stored in memory, and when phase II is
launched to generate cut sets corresponding to subsets
of cardinality 2, these articulation sets are first consid-
ered before the Heuristic approach is performed.

Even though the disaggregated representation was
shown to be superior to the aggregated one in the
previous section, this was only for single-node cut-set
structures. The situation might change if we allow cut
sets based on node subsets of higher cardinality; hence,
we report results for the two commodity represen-
tations. Table 5 displays the average results obtained
by the different cut-set generation methods. Methods
Enum?2 and Enum3 are used as a basis of comparison for
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the Articulation and Heuristic approaches. Since Artic
builds a partial list of cut sets based on node subsets of
cardinality 2, its lower bound should be less than the
one obtained with Enum2, which performs complete
enumeration of subsets of cardinality 2. As we can see
for both commodity representations, the lower bounds
obtained by Artic are very close to those computed
with Enum2, with a comparable computational effort.
Concerning the performance of the Heuristic approach,
we note that this method generates cut sets based on
node subsets of cardinality 2 or more; hence, Enum3
can be used as a basis of comparison for Heur and
ArticHeur. We can see that these two methods obtain
lower bounds that are extremely close to those gener-
ated by Enum3 and in less computing time (sometimes
significantly so; see, for instance, the results for class
II instances, which have more nodes than the other
instances). These results demonstrate the effectiveness,
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as well as the computational efficiency, of the Articu-
lation and Heuristic approaches for generating cut-set-
based inequalities from node subsets of cardinality 2
or more. In spite of this, including such inequalities
provides very little bound improvement on average:
less than 2% for the aggregated models and as little
as 0.4% for the disaggregated ones. We note, however,
that some instances in class II show more significant
bound improvement. These results also confirm the
superiority of the disaggregated commodity represen-
tation: the lower bounds are not only better, but they
are also obtained in much less computing time and by
generating less cuts.

5.5. Evaluation of Cutting-Plane Formulations

To evaluate more precisely the models obtained by
different variants of our cutting-plane algorithm, we
perform the B&B algorithm of CPLEX 12 with default
options, except for a time limit of two hours (note
that CPLEX will then generate its own cuts, accord-
ing to the default options). For each instance, the
best-known feasible solution (which is often optimal)
is provided as the initial incumbent. This way, our
experiments focus only on the quality of the lower
bounds in terms of their ability to prune the search
tree. We perform experiments with the disaggregated
and aggregated commodity representations for the fol-
lowing formulations.

e Weak. Model (1)-(7).

e Strong. Model (1)—(7) plus the SI identified by our
cutting-plane algorithm.

e Enuml. Model (1)-(7) plus all of the VI identi-
fied by our cutting-plane algorithm, using SI and cut-
set-based inequalities derived only from single-node
subsets.

e ArticHeur. Model (1)-(7) plus all of the VI iden-
tified by our cutting-plane algorithm, using SI and
cut-set-based inequalities derived from the ArticHeur
method.

Following the experiments with the resulting eight
formulations, we classify the instances into three
classes.

* Eagsy. Instances that are solved to optimality by
CPLEX for the eight models.

* Difficult. Instances that cannot be solved by CPLEX
(within the time limit of two hours) for any of the eight
formulations.

* Medium. Instances that are solved by CPLEX for at
least one of the eight formulations.

The results for the 123 Easy instances are provided
in Table 6, which gives the number of instances in
each class, “Nb,” and for each tested model, the aver-
age number of nodes generated in the B&B tree,
“Nodes,” and the average computing time, “t.” These
results show that weak and strong aggregated mod-
els perform better for solving the easy instances in
classes III-A and III-B, with very close results for
the disaggregated strong formulation, which generates
less B&B nodes, but in slightly more computing time.
For the easy instances in class II, the aggregated model
obtained from “Enuml” performs best, with the dis-
aggregated strong formulation a solid second in terms
of computing time (although the number of nodes is
significantly larger). For class I instances, the disag-
gregated models perform much better than the aggre-
gated ones, the disaggregated formulation obtained
from “Enuml” performing slightly better than the
strong model.

The results for the 52 Difficult instances are pro-
vided in Table 7, which gives the number of instances
in each class, “Nb,” and for each tested model, the
average number of nodes generated in the B&B tree,
“Nodes,” and the average final gap between the best
lower and upper bounds, “Az".” These results show
the superiority of the disaggregated commodity repre-
sentation for difficult instances. Indeed, the final gap is
generally smaller after two hours of computing time,
even though the number of generated nodes is signif-
icantly smaller with the disaggregated models, which
can be explained by the larger size of the disaggre-
gated LP relaxations solved at every node of the B&B
tree. The disaggregated strong model gives the best
results for the difficult instances in classes I and III-B,

Table 6. CPLEX B&B, Two Hours CPU Time Limit, Easy Instances

Classes Weak Strong Enuml ArticHeur
Nb Nodes t Nodes t Nodes t Nodes t
Disaggregated
Class I (7) 355 6.1 231 2.7 181 2.6 223 4.1
Class I (9) 14,667 417.8 15,405 349.1 8,070 369.1 5,025 691.9
Class IITI-A (72) 238 3.5 248 2.9 202 4.3 189 5.1
Class III-B (35) 2,174 446.7 2,087 264.6 1,500 329.7 1,361 323.3
Aggregated
Class I (7) 914 33.7 909 33.1 1,228 63.6 448 249
Class I (9) 17,863 390.7 24,300 509.7 6,926 345.4 5,615 353.4
Class IITI-A (72) 346 2.0 372 2.2 361 4.7 325 5.25
Class III-B (35) 4,147 219.9 3,935 214.8 4,836 674.6 5,335 714.8
RIGHTS i,
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Table 7. CPLEX Bé&B, Two Hours CPU Time Limit, Difficult Instances
Classes Weak Strong Enuml ArticHeur
Nb Nodes Az (%) Nodes Az (%) Nodes Az (%) Nodes Az (%)
Disaggregated
Class I (21) 3,741 1.66 4,563 1.54 3,332 1.56 2,511 1.56
Class II (3) 25,121 5.40 23,108 435 7,062 3.98 2,462 3.92
Class I1I-B (28) 5,930 2.35 6,924 222 3,094 2.30 2,536 241
Aggregated

Class I (21) 9,172 2.63 10,143 2.59 2,973 3.41 2,458 3.31
Class II (3) 27,207 6.14 23,748 4,67 5,804 417 3,067 4.20
Class I1I-B (28) 25,256 3.62 25,125 3.44 12,562 4.26 10,579 4.19
Table 8. CPLEX B&B, Two Hours CPU Time Limit, Medium Instances
Classes Weak Strong Enuml ArticHeur

Nb Sol t(Sol) Az* (%) Sol t(Sol) Az* (%) Sol t(Sol) Az (%) Sol t(Sol) Az* (%)

Disaggregated
Class I (3) 2 2,354.5 0.08 3 2,361.3 — 3 3,9343 — 1 60 0.07
Class I1I-B (18) 13 2,308.5 0.74 13 1,871.8 0.58 10 2,841.3 0.67 9 3,067.4 0.66
Aggregated

Class I (3) 0 — 0.70 1 6,913.0 0.84 0 — 1.56 0 — 1.33
Class I1I-B (18) 11 2,391.5 1.01 13 3,198.3 0.71 4 3,930.5 1.89 2 1,206.0 1.56

which are characterized by few nodes (less than 30) and
many commodities (more than 100). The “ArticHeur”
and “Enuml” variants perform best for the difficult
instances in class II, which have many nodes (100) and
few commodities (30). Even for these instances, the
final gap obtained by the disaggregated strong formu-
lation is close to the best final gap computed with the
”ArticHeur” and “Enum1” approaches.

The results for the 21 Medium instances are provided
in Table 8, which gives the number of instances in each
class, “Nb,” and for each tested model, the number of
instances solved by CPLEX within the time limit of two
hours, “Sol,” the average time necessary to solve these
instances, “t(Sol),” and the average final gap for the
instances that could not be solved by CPLEX within two
hours, “Az".” The results show the superiority of the dis-
aggregated strong model for solving these instances: the
three instances in class I are solved (with “Enum1” also,
but in more computing time), and 13 of the 18 instances
in class II-B are solved to optimality. The disaggregated
weak and the aggregated strong formulations also solve
13 instances in class III-B, but in more computing time.
In addition, the final gap for the remaining unsolved
instances is smaller for the disaggregated strong model.

Over all classes of instances, the disaggregated strong
model emerges as the most effective one. It solves 139
instances in the smallest average computing time
among the eight modeling options, and the remain-
ing 57 unsolved instances display an average opti-
mality gap of 1.93%. In general, adding cut-set-based
inequalities yields LP relaxations that are too large,
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which generally translates into prohibitive computa-
tional effort, although some instances in class II can
be solved more efficiently with the introduction of
flow pack inequalities. The aggregated commodity
representation is generally outperformed by the dis-
aggregated one, except for the easiest instances; even
for these instances, the disaggregated models per-
form well.

6. Conclusions
In this paper, we have presented a cutting-plane algo-
rithm for the multicommodity capacitated fixed-charge
network design problem. We have described five fam-
ilies of known VI: the strong, cover, minimum car-
dinality, flow cover, and flow pack inequalities. We
have developed efficient separation and lifting pro-
cedures, as well as a cut-set generation algorithm
based on metaheuristics principles. Finally, we have
presented computational results conducted on a large
set of instances. Our computational experiments have
focused on two key modeling aspects: the representa-
tion of the commodities, either aggregated or disaggre-
gated, and the impact of the cut-set-based inequalities.
Our computational study shows the strength of the
disaggregated commodity representation, when com-
bined with dynamic generation of strong inequali-
ties. It also suggests that cut-set-based inequalities
have a limited impact on instances with many com-
modities (more than 100). Although we have tested
our cutting-plane algorithm within the enumerative
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framework implemented in CPLEX, the procedure
can be included into a more promising custom-made
branch-and-cut algorithm. Finally, it would be interest-
ing to investigate the usefulness of the proposed sepa-
ration and cut-set generation methods to improve the
formulations of other network design formulations.
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